Efficiency distribution and expected efficiencies in DEA with imprecise data

نویسنده

  • Bohlool Ebrahimi Satellite Research Institute, Iranian Space Research Center, Tehran, Iran
چکیده مقاله:

Several methods have been proposed for ranking the decision-making units (DMUs) in data envelopment analysis (DEA) with imprecise data. Some methods have only used the upper bound efficiencies to rank DMUs. However, some other methods have considered both of the lower and upper bound efficiencies to rank DMUs. The current paper shows that these methods did not consider the DEA axioms and may be unable to produce a rational ranking. We show that considering the imprecise data as stochastic and using the expected efficiencies to rank DMUs give better results. Indeed, we propose a new ranking approach, based on considering the DEA axioms for imprecise data that removes the existing drawbacks. Some numerical examples are provided to explain the content of the paper.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-discretionary imprecise data in efficiency Measurement

This paper introduces discretionary imprecise data in Data Envelopment Analysis (DEA) and discusses the efficiency evaluation of Decision Making Units (DMUs) with non-discretionary imprecise data. Then, suggests a method for evaluation the efficiency of DMUs with non-discretionary imprecise data. When some inputs and outputs are imprecise and non-discretionary, the DEA model becomes non-linear ...

متن کامل

The Efficiency of MSBM Model with Imprecise Data (Interval)

Data Envelopment Analysis (DEA) is a mathematical programming-based approach for evaluates the relative efficiency of a set of DMUs (Decision Making Units). The relative efficiency of a DMU is the result of comparing the inputs and outputs of the DMU and those of other DMUs in the PPS (Production Possibility Set). Also, in Data Envelopment Analysis various models have been developed in order to...

متن کامل

Randomizing DEA Efficiency Scores with Beta Distribution

Since the original publication on Data Envelopment Analysis (DEA) by Charnes et al. (1978), a considerable amount of research publications have appeared in decision science literature, a significant portion of which focusing on efficiency and productivity in the banking sector. A comprehensive survey of bank efficiency studies could be found in Fethi and Pasiouras (2010). They have examined ban...

متن کامل

Non-Discretionary Factors and Imprecise Data in DEA

Discretionary models of data envelopment analysis (DEA) assume that all inputs and outputs can be varied at the discretion of management or other users. In any realistic situation, however, there may exist ”exogenously fixed” or non-discretionary factors that are beyond the control of a DMU’s management, which also need to be considered. Also DEA requires that the data for all discretionary inp...

متن کامل

non-discretionary imprecise data in efficiency measurement

this paper introduces discretionary imprecise data in data envelopment analysis (dea) and discusses the efficiency evaluation of decision making units (dmus) with non-discretionary imprecise data. then, suggests a method for evaluation the efficiency of dmus with non-discretionary imprecise data. when some inputs and outputs are imprecise and non-discretionary, the dea model becomes non-linear ...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 12  شماره 1

صفحات  185- 197

تاریخ انتشار 2019-01-10

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023